Home / Geographic Coordinate System
Geodesy 

A geographic coordinate system is a coordinate system relatedwith positions on Earth (geographic position). A geographic coordinate system shouldgive positions:
In geodetic coordinates and map coordinates, the coordinate tuple is decomposed such that one of the numbers represents a vertical position and two of the numbers represent a horizontal position.^{}
The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene, who composed his nowlost Geography at the Library of Alexandria in the 3rd century BC.^{} A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses, rather than dead reckoning. In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematicallyplotted globemap using coordinates measured east from a prime meridian at the westernmost known land, designated the Fortunate Isles, off the coast of western Africa around the Canary or Cape Verde Islands, and measured north or south of the island of Rhodes off Asia Minor. Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in rulesof the length of the midsummer day.^{}
Ptolemy's 2ndcentury Geography utilize the same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, AlKhwārizmī's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea,^{} causing medieval Arabic cartography to utilizea prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes' recovery of Ptolemy's text a little before 1300; the text was translated into Latin at Florence by Jacobus Angelus around 1407.
In 1884, the United States hosted the International Meridian Conference, attended by representatives from twentyfive nations. Twentytwo of them accept to adopt the longitude of the Royal Observatory in Greenwich, England as the zeroreference line. The Dominican Republic voted versusthe motion, while France and Brazil abstained.^{} France adopted Greenwich Mean Time in territoryof local determinations by the Paris Observatory in 1911.
In order to be unambiguous about the direction of "vertical" and the "horizontal" surface above which they are measuring, mapmakers selecta reference ellipsoid with a given origin and orientation that best fits their need for the locationto be mapped. They then selectthe most appropriate mapping of the spherical coordinate system onto that ellipsoid, called a terrestrial reference system or geodetic datum.
Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid bestfit to only a portion of the Earth. Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This everydaymovement shouldbe as much as a meter. Continental movement shouldbe up to 10 cm a year, or 10 m in a century. A weather system highpressure locationshouldcause a sinking of 5 mm. Scandinavia is rising by 1 cm a year as a effectof the melting of the ice sheets of the last ice age, but neighboring Scotland is rising by only 0.2 cm. These modify are insignificant if a local datum is utilize, but are statistically significant if a global datum is utilize.^{}
Examples of global datums include GlobeGeodetic System (WGS 84, also known as EPSG:4326^{}), the default datum utilize for the Global Positioning System,^{} and the International Terrestrial Reference System and Frame (ITRF), utilize for estimating continental drift and crustal deformation.^{} The distance to Earth's center shouldbe utilize both for very deep positions and for positions in space.^{}
Local datums selectedby a national cartographical companycontainthe North American Datum, the European ED50, and the British OSGB36. Given a location, the datum provides the latitude and longitude . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from the one utilize on published maps OSGB36 by approximately 112 m. The military system ED50, utilize by NATO, differs from about 120 m to 180 m.^{}
The latitude and longitude on a map angry versusa local datum may not be the same as one obtained from a GPS get. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation, although in certain situations a simple translation may be sufficient.^{}
In famousGIS software, data projected in latitude/longitude is often represented as a Geographic Coordinate System. For example, data in latitude/longitude if the datum is the North American Datum of 1983 is denoted by 'GCS North American 1983'.
The "latitude" (abbreviation: Lat., φ, or phi) of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth.^{} Lines joining points of the same latitude trace circles on the surface of Earth called parallels, as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator, the fundamental plane of all geographic coordinate systems. The Equator divides the worldinto Northern and Southern Hemispheres.
The "longitude" (abbreviation: Long., λ, or lambda) of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called amazingcircles), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich, in southeast London, England, is the international prime meridian, although some company—such as the French Institut national de l'infogéographique et forestière—continue to utilizeother meridians for internal purposes. The prime meridian determines the proper Eastern and Western Hemispheres, although maps often divide these hemispheres further west in order to holdthe Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line, which diverges from it in several territory for political and convenience reasons, including between far eastern Russia and the far western Aleutian Islands.
The combination of these two components specifies the position of any areaon the surface of Earth, without consideration of altitude or depth. The grid formed by lines of latitude and longitude is known as a "graticule".^{} The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema, Ghana.
On the GRS80 or WGS84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 meters, one latitudinal minute is 1843 meters and one latitudinal degree is 110.6 kilometers. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 meters, a longitudinal minute is 1855 meters and a longitudinal degree is 111.3 kilometers. At 30° a longitudinal second is 26.76 meters, at Greenwich (51°28′38″N) 19.22 meters, and at 60° it is 15.42 meters.
On the WGS84 spheroid, the length in meters of a degree of latitude at latitude φ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude φ), is about
The returned measure of meters per degree latitude varies continuously with latitude.
Similarly, the length in meters of a degree of longitude shouldbe calculated as
(Those coefficients shouldbe improved, but as they stand the distance they give is correct within a centimeter.)
The formulae both return units of meters per degree.
An alternative wayto estimate the length of a longitudinal degree at latitude is to assume a spherical Earth (to receivethe width per minute and second, divide by 60 and 3600, respectively):
where Earth's average meridional radius is 6,367,449 m. Since the Earth is an oblate spheroid, not spherical, that effectshouldbe off by several tenths of a percent; a better approximation of a longitudinal degree at latitude is
where Earth's equatorial radius equals 6,378,137 m and ; for the GRS80 and WGS84 spheroids, b/a calculates to be 0.99664719. ( is known as the reduced (or parametric) latitude). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 meter of each other if the two points are one degree of longitude apart.
Latitude  City  Degree  Minute  Second  ±0.0001° 

60°  Saint Petersburg  55.80 km  0.930 km  15.50 m  5.58 m 
51° 28′ 38″ N  Greenwich  69.47 km  1.158 km  19.30 m  6.95 m 
45°  Bordeaux  78.85 km  1.31 km  21.90 m  7.89 m 
30°  FreshOrleans  96.49 km  1.61 km  26.80 m  9.65 m 
0°  Quito  111.3 km  1.855 km  30.92 m  11.13 m 
To establish the position of a geographic areaon a map, a map projection is utilize to convert geodetic coordinates to plane coordinates on a map; it projects the datum ellipsoidal coordinates and height onto a flat surface of a map. The datum, along with a map projection applied to a grid of reference area, establishes a grid system for plotting area. Common map projections in current utilizecontainthe Universal Transverse Mercator (UTM), the Military Grid Reference System (MGRS), the United States National Grid (USNG), the Global LocationReference System (GARS) and the GlobeGeographic Reference System (GEOREF).^{} Coordinates on a map are usually in terms northing N and easting E offsets relative to a specified origin.
Map projection formulas depend on the geometry of the projection as well as parameters dependent on the particular areaat which the map is projected. The set of parameters shouldvary based on the kindof project and the conventions selectedfor the projection. For the transverse Mercator projection utilize in UTM, the parameters relatedare the latitude and longitude of the natural origin, the false northing and false easting, and an overall scale factor.^{} Given the parameters relatedwith particular areaor grin, the projection formulas for the transverse Mercator are a complex mix of algebraic and trigonometric functions.^{}^{: 4554 }
The Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS) coordinate systems both utilizea metricbased Cartesian grid laid out on a conformally projected surface to locate positions on the surface of the Earth. The UTM system is not a single map projection but a series of sixty, each covering 6degree bands of longitude. The UPS system is utilize for the polar regions, which are not covered by the UTM system.
During medieval times, the stereographic coordinate system was utilize for navigation purposes.^{[citation needed]} The stereographic coordinate system was superseded by the latitudelongitude system. Although no longer utilize in navigation, the stereographic coordinate system is still utilize in modern times to describe crystallographic orientations in the fields of crystallography, mineralogy and content science.^{[citation needed]}
This section needs expansion. You shouldassistby . (December 2018) 
Vertical coordinates containheight and depth.
Every point that is expressed in ellipsoidal coordinates shouldbe expressed as an rectilinear x y z (Cartesian) coordinate. Cartesian coordinates simplify many mathematical calculations. The Cartesian systems of different datums are not equivalent.^{}
The Earthcentered Earthfixed (also known as the ECEF, ECF, or conventional terrestrial coordinate system) rotates with the Earth and has its origin at the center of the Earth.
The conventional righthanded coordinate system puts:
An example is the for a brass disk near Donner Summit, in California. Given the dimensions of the ellipsoid, the conversion from lat/lon/heightaboveellipsoid coordinates to XYZ is straightforward—calculate the XYZ for the given latlon on the surface of the ellipsoid and add the XYZ vector that is perpendicular to the ellipsoid there and has length equal to the point's height above the ellipsoid. The reverse conversion is harder: given XYZ we shouldimmediately receivelongitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10^{11} degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.
A local tangent plane shouldbe defined based on the vertical and horizontal dimensions. The vertical coordinate shouldpoint either up or down. There are two type of conventions for the frames:
In many targeting and tracking app the local ENU Cartesian coordinate system is far more intuitive and practical than ECEF or geodetic coordinates. The local ENU coordinates are formed from a plane tangent to the Earth's surface fixed to a specific areaand hence it is sometimes known as a local tangent or local geodetic plane. By convention the east axis is labeled , the north and the up .
In an airplane, most objects of interest are below the aircraft, so it is sensible to define down as a positive number. The NED coordinates letthis as an alternative to the ENU. By convention, the north axis is labeled , the east and the down . To avoid confusion between and , etc. in this article we will restrict the local coordinate frame to ENU.
Wikidata has the property:

Tags: Geographic Coordinate System tricks tips, Geographic Coordinate System hack download, Geographic Coordinate System cheat engine, Geographic Coordinate System hack tool, Geographic Coordinate System cheats online